版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、<p> A Rapidly Deployable Manipulator System</p><p> Christiaan J.J. Paredis, H. Benjamin Brown, Pradeep K. Khosla</p><p> Abstract: </p><p> A rapidly deployable manipul
2、ator system combines the flexibility of reconfigurable modular hardware with modular programming tools, allowing the user to rapidly create a manipulator which is custom-tailored for a given task. This article describes
3、two main aspects of such a system, namely, the Reconfigurable Modular Manipulator System (RMMS)hardware and the corresponding control software.</p><p> 1 Introduction</p><p> Robot manipulator
4、s can be easily reprogrammed to perform different tasks, yet the range of tasks that can be performed by a manipulator is limited by mechanicalstructure.Forexample, a manipulator well-suited for precise movement across t
5、he top of a table would probably no be capable of lifting heavy objects in the vertical direction. Therefore, to perform a given task,one needs to choose a manipulator with an appropriate mechanical structure. </p>
6、<p> We propose the concept of a rapidly deployable manipulator system to address the above mentioned shortcomings of fixed configuration manipulators. As is illustrated in Figure 1, a rapidly deployable manipula
7、tor system consists of software and hardware that allow the user to rapidly build and program a manipulator which is customtailored for a given task. </p><p> The central building block of a rapidly deploy
8、able system is a Reconfigurable Modular Manipulator System (RMMS). The RMMS utilizes a stock of interchangeable link and joint modules of various sizes and performance specifications. One such module is shown in Figure 2
9、. By combining these general purpose modules, a wide range of special purpose manipulators can be assembled. Recently, there has been considerable interest in the idea of modular manipulators [2, 4, 5, 7, 9, 10, 14], for
10、 research appl</p><p> Effective use of the RMMS requires, Task Based Design software. This software takes as input descriptions of the task and of the available manipulator modules; it generates as output
11、a modular assembly configuration optimally suited to perform the given task. Several different approaches have been used successfully to solve simpli-fied instances of this complicated problem.</p><p> A th
12、ird important building block of a rapidly deployable manipulator system is a framework for the generation of control software. To reduce the complexity of softwaregeneration for real-time sensor-based control systems, a
13、software paradigm called software assembly has been proposed in the Advanced Manipulators Laboratory at CMU.This paradigm combines the concept of reusable and reconfigurable software components, as is supported by the Ch
14、imera real-time operating system [15], with a graphical </p><p> Although the software assembly paradigm provides thesoftware infrastructure for rapidly programming manipulator systems, it does not solve th
15、e programming problem itself. Explicit programming of sensor-based manipulator systems is cumbersome due to the extensive amount of detail which must be specified for the robot to perform the task. The software synthesis
16、 problem for sensor-based robots can be simplified dramatically, by providing robust robotic skills, that is, encapsulated strategies for a</p><p> As an example of the use of a rapidly deployable system,co
17、nsider a manipulator in a nuclear environment where it must inspect material and space for radioactive contamination, or assemble and repair equipment. In such an environment, widely varied kinematic (e.g., workspace) an
18、d dynamic (e.g., speed, payload) performance is required, and these requirements may not be known a priori. Instead of preparing a large set of different manipulators to accomplish these tasks—an expensive solution—one c
19、an</p><p> Although such a scenario is still futuristic, the development of the reconfigurable modular manipulator system, described in this paper, is a major step forward towards our goal of a rapidly depl
20、oyable manipulator system.</p><p> Our approach could form the basis for the next generation of autonomous manipulators, in which the traditional notion of sensor-based autonomy is extended to configuration
21、-based autonomy. Indeed, although a deployed system can have all the sensory and planning information it needs, it may still not be able to accomplish its task because the task is beyond the system’s physical capabilitie
22、s. A rapidly deployable system, on the other hand, could adapt its physical capabilities based on task specif</p><p> 2 Design of self-contained hardware modules</p><p> In most industrial man
23、ipulators, the controller is a separate unit housing the sensor interfaces, power amplifiers, and control processors for all the joints of the manipulator.A large number of wires is necessary to connect this control unit
24、 with the sensors, actuators and brakes located in each of the joints of the manipulator. The large number of electrical connections and the non-extensible nature of such a system layout make it infeasible for modular ma
25、nipulators. The solution we propose is</p><p> 2.1 Mechanical design</p><p> The goal of the RMMS project is to have a wide variety of hardware modules available. So far, we have built four ki
26、nds of modules: the manipulator base, a link module, three pivot joint modules (one of which is shown in Figure 2), and one rotate joint module. The base module and the link module have no degrees-of-freedom; the joint m
27、odules have one degree-of-freedom each. The mechanical design of the joint modules compactly fits a DC-motor, a fail-safe brake, a tachometer, a harmonic drive and a</p><p> The pivot and rotate joint modul
28、es use different outside housings to provide the right-angle or in-line configuration respectively, but are identical internally. Figure 4 shows in cross-section the internal structure of a pivot joint. Each joint module
29、 includes a DC torque motor and 100:1 harmonic-drive speed reducer, and is rated at a maximum speed of 1.5rad/s and maximum torque of 270Nm. Each module has a mass of approximately 10.7kg. A single, compact, X-type beari
30、ng connects the two joint ha</p><p> 2.2 Electronic design</p><p> The custom-designed on-board electronics are also designed according to the principle of modularity. Each RMMS module contain
31、s a motherboard which provides the basic functionality and onto which daughtercards can be stacked to add module specific functionality.</p><p> The motherboard consists of a Siemens 80C166 microcontroller,
32、 64K of ROM, 64K of RAM, an SMC COM20020 universal local area network controller with an RS-485 driver, and an RS-232 driver. The function of the motherboard is to establish communication with the host interface via an R
33、S-485 bus and to perform the lowlevel control of the module, as is explained in more detail in Section 4. The RS-232 serial bus driver allows for simple diagnostics and software prototyping.</p><p> A stack
34、ing connector permits the addition of an indefinite number of daughtercards with various functions, such as sensor interfaces, motor controllers, RAM expansion etc. In our current implementation, only modules with actuat
35、ors include a daughtercard. This card contains a 16 bit resolver to digital converter, a 12 bit A/D converter to interface with the tachometer, and a 12 bit D/A converter to control the motor amplifier; we have used an o
36、fthe-shelf motor amplifier (Galil Motion Control mode</p><p> 3 Integrated quick-coupling connectors</p><p> To make a modular manipulator be reconfigurable, it is necessary that the modules c
37、an be easily connected with each other. We have developed a quick-coupling mechanism with which a secure mechanical connection between modules can be achieved by simply turning a ring handtight; no tools are required. As
38、 shown in Figure 5, keyed flanges provide precise registration of the two modules. Turning of the locking collar on the male end produces two distinct motions: first the fingers of the locking ring</p><p>
39、At the same time the mechanical connection is made,pneumatic and electronic connections are also established. Inside the locking ring is a modular connector that has 30 male electrical pins plus a pneumatic coupler in th
40、e middle. These correspond to matching female components on the mating connector. Sets of pins are wired in parallel to carry the 72V-25A power for motors and brakes, and 48V–6A power for the electronics. Additional pins
41、 carry signals for two RS-485 serial communication busses an</p><p> 4 ARMbus communication system</p><p> Each of the modules of the RMMS communicates with a VME-based host interface over a l
42、ocal area network called the ARMbus; each module is a node of the network. The communication is done in a serial fashion over an RS-485 bus which runs through the length of the manipulator. We use the ARCNET protocol [1]
43、 implemented on a dedicated IC (SMC COM20020). ARCNET is a deterministic token-passing network scheme which avoids network collisions and guarantees each node its time to access the network. Bloc</p><p> Th
44、e first node of the network resides on the host interface card, as is depicted in Figure 6. In addition to a VME address decoder, this card contains essentially the same hardware one can find on a module motherboard. The
45、 communication between the VME side of the card and the ARCNET side occurs through dual-port RAM.</p><p> There are two kinds of data passed over the local area network. During the manipulator initializatio
46、n phase, the modules connect to the network one by one, starting at the base and ending at the end-effector. On joining the network, each module sends a data-packet to the host interface containing its serial number and
47、its relative orientation with respect to the previous module. This information allows us to automatically determine the current manipulator configuration.</p><p> During the operation phase, the host interf
48、ace communicates with each of the nodes at 400Hz. The data that is exchanged depends on the control mode—centralized or distributed. In centralized control mode, the torques for all the joints are computed on the VME-bas
49、ed real-time processing unit (RTPU), assembled into a data-packet by the microcontroller on the host interface card and broadcast over the ARMbus to all the nodes of the network. Each node extracts its torque value from
50、the packet and re</p><p> 5 Modular and reconfigurable control software</p><p> The control software for the RMMS has been developed using the Chimera real-time operating system, which support
51、s reconfigurable and reusable software components [15]. The software components used to control the RMMS are listed in Table 1. The trjjline, dls, and grav_comp components require the knowledge of certain configuration d
52、ependent parameters of the RMMS, such as the number of degrees-of-freedom, the Denavit-Hartenberg parameters etc. During the initialization phase, the RMMS interface es</p><p> After the initialization, the
53、 rmms software component operates in a distributed control mode in which the microcontrollers of each of the RMMS modules perform PID control locally at 1900Hz. The communication between the modules and the host interfac
54、e is at 400Hz, which can differ from the cycle frequency of the rmms software component. Since we use a triple buffer mechanism [16] for the communication through the dual-port RAM on the ARMbus host interface, no synchr
55、onization or handshaking is nec</p><p> Because closed form inverse kinematics do not exist for all possible RMMS configurations, we use a damped least-squares kinematic controller to do the inverse kinemat
56、ics computation numerically..</p><p> 6 Seamless integration of simulation</p><p> To assist the user in evaluating whether an RMMS con- figuration can successfully complete a given task, we h
57、ave built a simulator. The simulator is based on the TeleGrip robot simulation software from Deneb Inc., and runs on an SGI Crimson which is connected with the real-time processing unit through a Bit3 VME-to-VME adaptor,
58、 as is shown in Figure 6. A graphical user interface allows the user to assemble simulated RMMS configurations very much like assembling the real hardware. Completed confi</p><p><b> 7 Summary</b&g
59、t;</p><p> We have developed a Reconfigurable Modular Manipulator System which currently consists of six hardware modules, with a total of four degrees-of-freedom. These modules can be assembled in a large
60、number of different configurations to tailor the kinematic and dynamic properties of the manipulator to the task at hand. The control software for the RMMS automatically adapts to the assembly configuration by building k
61、inematic and dynamic models of the manipulator; this is totally transparent to the us</p><p> Acknowledgment</p><p> This research was funded in part by DOE under grant DE-F902-89ER14042, by S
62、andia National Laboratories under contract AL-3020, by the Department of Electrical and Computer Engineering, and by The Robotics Institute, Carnegie Mellon University.</p><p> The authors would also like t
63、o thank Randy Casciola, Mark DeLouis, Eric Hoffman, and Jim Moody for their valuable contributions to the design of the RMMS system.</p><p> 可迅速布置的機械手系統(tǒng)</p><p> 作者:Christiaan J.J. Paredis, H.
64、Benjamin Brown, Pradeep K. Khosla</p><p><b> 摘 要: </b></p><p> 一個迅速可部署的機械手系統(tǒng),可以使再組合的標準化的硬件的靈活性用標準化的編程工具結合,允許用戶迅速建立為一項規(guī)定的任務來通常地控制機械手。這篇文章描述這樣的一個系統(tǒng)的兩個主要方面,即,再組合的標準化的機械手系統(tǒng)(RMMS)硬件和相應控
65、制軟件。</p><p><b> 1 介紹</b></p><p> 機器人操縱裝置可能容易被程序重調(diào)執(zhí)行不同的任務, 然而一個機械手可以執(zhí)行的任務的范圍已經(jīng)被它的機械結構限制。例如,一個很適合準確的運動的機械手在一張桌子上部或許將不能朝著垂直的方向舉起重物。因此,執(zhí)行規(guī)定的任務,需要有一個合適的機械結構來選擇機械手。</p><p>
66、 我們提議一個迅速可部署的機械手系統(tǒng)的概念來處理固定構造的機械手的上述的缺點。一迅速可部署機械手系統(tǒng)由迅速建造的軟件和硬件組成,是適合一規(guī)定任務的一個機械手。</p><p> 一個迅速可部署的系統(tǒng)的中心的組成部分是一個再組合的標準化的機械手系統(tǒng)(RMMS)。 RMMS利用一可交換的連接的和各種尺寸和性能的共同模件。通過結合這些多功能的模件,大范圍專用機械手可以被收集。 最近,有相當多的對機械手標準化的想法的興
67、趣。但是,對于研究應用以及為工業(yè)應用來說, 大多數(shù)這些系統(tǒng)缺乏的必要的能力,這是迅速可部署的體制的概念的關鍵。</p><p> 有效的使用RMMS需要基于任務的設計軟件。 這軟件認為是任務和可得到的操縱者模件的輸入描述;作為一標準化會議構造最佳適合執(zhí)行規(guī)定任務的業(yè)務的產(chǎn)量產(chǎn)生。幾種不同的方法已經(jīng)被成功使用解決這個錯綜復雜的問題的。 </p><p> 一個迅速可部署的機械手系統(tǒng)的第3
68、 個重要的組成部分是控制軟件的代的一種框架。為實時基于傳感器的控制系統(tǒng)降低軟件生成的復雜性, 一個軟件范例叫軟件為會議已經(jīng)在CMU先進的操縱者實驗室里被提出。這個范例結合可重復使用和再組合的軟件成分的概念,象妄想實時操作系統(tǒng)支持的那樣,用一個圖形用戶界面和可視程序設計語言而實施.</p><p> 雖然軟件會議范例提供迅速編程操縱者系統(tǒng)的軟件基礎設施,但是它不解決編程問題?;趥鞲衅鞯臋C械手系統(tǒng)的明確編程由于必
69、須被為機器人指定執(zhí)行任務的廣大數(shù)量的細節(jié)是麻煩的?;趥鞲衅鞯臋C器人的軟件綜合問題可以被簡化,通過提供堅固的機器人技能, 即,為在機器人任務域完成普通任務封裝策略. 這樣機器人技能能在而不需要考慮任何低級的細節(jié)的任務步計劃階段使用。</p><p> 作為使用一個迅速可部署的系統(tǒng)的例子, 在一種核環(huán)境里,在那里它必須檢查材料和放射性污染的空間,或者集合和修理設備考慮一個操縱者。在這樣的一種環(huán)境里, 廣泛改變的動
70、態(tài)的(例如,工作區(qū))和動態(tài)的(例如,速度,凈載重量)性能被要求, 并且這些要求可能不被知道priori。不得不準備大套要完成這幾次任務的不同操縱者一昂貴解決辦法一使用迅速可部署操縱者系統(tǒng)能。 考慮下列腳本:一項具體的任務一被鑒定,基于任務的設計軟件就使最佳的標準化的會議構造下決心進行任務。人們?nèi)缓髲腞MMS 模件裝配這個最佳的構造或者,將來,也許到另一個操縱者。導致的操縱者被迅速通過使用軟件裝配范例和我們的機器人技能的信息庫編程序。 最
71、后,操縱者被有效地使用執(zhí)行它的任務。雖然這樣的腳本仍然是未來的, 再組合的標準化的操縱者系統(tǒng)的發(fā)展,在這篇文章里描述,是向我們的一個迅速可部署的機械手系統(tǒng)的目標的一個向前的主要的臺階。</p><p> 我們的方法能為自治機械手的下一代形成基礎,其中基于傳感器的自治權的傳統(tǒng)的觀念被給予基于構造的自治權。的確, 雖然一個部署的系統(tǒng)能有它需要的全部感覺并且計劃的信息, 它可能仍然不能完成它的任務,因為任務是在系統(tǒng)的
72、物理能力以外。一個迅速可部署的系統(tǒng), 另一方面, 能改編它的基于任務說明的物理能力和帶有先進的感覺,控制,以及計劃策略,自動完成任務。</p><p> 2硬件模塊的2種設計</p><p> 在通常工業(yè)機械手里, 那些控制器單獨接在那些傳感器接口,功率放大器,并且因機械手全部關節(jié)那些機械手而控制處理器。許多電線連接這個控制單位和傳感器,位于機械手的每個關節(jié)的作動器和剎車是必要的。大量
73、電氣裝線和這樣的一次系統(tǒng)平面布置的非可擴展性,為標準化的機械手使它不能實行。我們提出的這個解決辦法是將控制硬件分配給操縱者的每個個別的模件。 包括傳感器的這些模件然后成為整裝組件,作動器,一個剎車,一次輸送,一個傳感器接口,一個電動機放大器和一個通信接口。</p><p><b> 2.1機械設計</b></p><p> RMMS 工程的目標是有可提供的多種硬件
74、模塊。迄今,我們已經(jīng)建造4 種模件: 操縱者基礎,一連接模塊,樞共同模件(一在身材顯示),并且一旋轉共同模件。底部模件和連接模塊沒有自由度; 共同模件各自有一自由度。共同模件的機械設計緊密適合一臺直流電動機,一個有自動防故障設備的剎車,一臺轉速表,諧波運動。</p><p> 那些樞和旋轉共同模件在外部使用提供那些直角不同或者成隊構造分別,但是相同內(nèi)部,在典型地方顯示一共同的樞的內(nèi)部結構。 每個共同模件包括一臺
75、直流力矩電動機和100:1的諧波駕駛速度減壓器, 并且被在1.5rad /s 和270納米的最高轉矩的最高速度下。不是每個模件都有塊大約10.7公斤一單個,小型,耐壓的X 類型提供需要的剛性連結并且相連在一起。一根空的電動機軸通過全部旋轉的零部件,并且為最小的屈曲電信號的傳送提供一條通道。</p><p><b> 2.2 電子設計</b></p><p> 通俗
76、設計的艙中的電子也被根據(jù)的原則設計。每個RMMS 模件包含主板,提供基本的功能性和可以被堆積增加模件具體的功能性。</p><p> 主板由西門子80C 166組成, 64 K ROM,RAM,一SMC COM20020的64 K 有一臺RS-485 驅(qū)動器和一臺RS-232 驅(qū)動器的普遍的局部地區(qū)網(wǎng)絡控制器。主板的功能是通過一種RS-485公共系統(tǒng)建立與主接口的聯(lián)系和進行程序控制模件, 象在第4 部分被更詳細
77、解釋的那樣。RS-232 連續(xù)的公共汽車司機考慮到單純的診斷和軟件原型法。</p><p> 一個堆積的連接器有各種各樣的功能允許模糊的數(shù)量的增加,例如傳感器接口,電動機控制器,RAM 擴大器等等,在我們的當今的實施里,只是有作動器的模件包括daughtercard。 這張卡片到數(shù)字化的變換器包含一16位resolver,要與轉速表和一臺12 位D/A變換器接口控制電動機放大器的一臺12 位模數(shù)轉換器;我們已經(jīng)
78、使用一個ofthe 架子電動機放大器(Galil運動控制模型SSA 8/80)驅(qū)動直流電動機。對有超過一自由度,例如一個腕模件的模件來說,不止一這樣的daughtercard可以被堆積到相同的主板上。</p><p> 3 綜合連合的連接器</p><p> 為了使一個標準化的機械手再組合,模件可能容易被彼此連結是必要的。我們已經(jīng)發(fā)展一個迅速連合的機制,在模件之間的一個安全的機械連接
79、可以通過僅僅轉動一枚handtight被取得; 沒有工具被要求。調(diào)整凸緣提供兩個模件的準確的連接。 鎖住的手腕的轉動在末端上產(chǎn)生兩種不同的動作:首先,鎖住的手指大約22.5 程度和捕獲輪流(與手腕一起)手指在凸緣上運動;其次,那些手腕相對于鎖住的手指,而凸輪機制強迫那些內(nèi)在的手指在可靠緊握輪子的凸緣運動。在領和鎖住的手指之間的轉動機構自動生產(chǎn)這個運動順序。</p><p> 同時機械連接被做成為裝滿和電子的連接
80、。 在每鎖住的指里面有30電別針以上一裝滿電子偶合器在中間的一標準化連接器是。這些符合匹配鋪席子的連接器上的凹形零部件。 別針被電報告知在方面與平行那些72 V-25A去電動機和剎車和去那些電子的權力48 V-6A的權力。</p><p> 4 ARMbus 通信系統(tǒng)</p><p> RMMS的每個模件在一個稱為ARMbus的局域網(wǎng)上方與一個基于VME的主接口聯(lián)系; 每個模件都是一
81、個網(wǎng)絡的節(jié)點。通訊被在機械手的長度的一輛RS-485公共汽車上方用連續(xù)方式做。 我們使用ARCNET 協(xié)議 [1]在一奉獻的IC(SMC COM20020)上實現(xiàn)。ARCNET是避免網(wǎng)絡沖突并且在訪問網(wǎng)絡的它的時間保證每個節(jié)點的一個決定性的權標傳遞網(wǎng)絡計劃。稱為包的信息的塊可能被在網(wǎng)絡上從任何節(jié)點送給其它節(jié)點中的任何一個, 或者對全部節(jié)點同時(廣播)。 每當它得到標志的時候,每個節(jié)點可以送一包。</p><p>
82、 網(wǎng)絡的第一個節(jié)點保存在主接口卡,象被用圖6 描繪的那樣。 除一VME 地址譯碼器之外,這卡片包含基本上相同的硬件一能在模件主板上發(fā)現(xiàn)。在這張卡上的VME和ARCNET之間的聯(lián)系邊是通過雙口RAM 發(fā)生的。有兩種數(shù)據(jù)通過局域網(wǎng)。 在機械手預置階段期間,模件一個接一個連接網(wǎng)絡,在基礎啟動并且結束最后effector。關于參加網(wǎng)絡,每模件寄一數(shù)據(jù)包給包含它的順序號和它的與以前的艙有關的有關的認識新環(huán)境的主機接口。這信息允許我們自動確定當今
83、的機械手構造。在運行階段,主接口以400赫茲與每個節(jié)點聯(lián)系。 被交換的數(shù)據(jù)取決于控制模式集中或者被分配。用集中的控制模式,全部關節(jié)的力矩被在基于VME的實時工藝設備(RTPU)上計算,進一數(shù)據(jù)包以microcontroller 集合在主接口卡上和越過ARMbus隨著的全部網(wǎng)絡的節(jié)點。每個節(jié)點從包中抽出它的力矩價值并且通過使數(shù)據(jù)包包含resolver 和轉速表讀數(shù)回答。用分配的控制模式, 另一方面,主機播送被期望的共同價值和前饋力矩。 當
84、地,在每個模件里,控制環(huán)然后能被在比400赫茲高得多的頻率關閉模件仍然把傳感器讀數(shù)回寄給主聯(lián)接于被在隨后的前饋力矩的計算內(nèi)使</p><p> 5 標準化和再組合的控制軟件</p><p> 控制軟件給RMMS 發(fā)展使用妄想實時操作系統(tǒng),支持再組合和可重復使用的軟件成分 [15]. 用來控制RMMS的軟件成分被列舉。主題組成部分需要一定構造RMMS的依靠的參數(shù)知識,在預置階段期間, R
85、MMS接口建立與每個硬件模塊的關系自動確定哪個模件正被使用, 并且他們的命令和定向收集。對每個模件來說,一個數(shù)據(jù)提交給一個參數(shù)模型被讀。 通過結合這全部模件的信息,整個操縱者的動態(tài)和動態(tài)的模型被建造。在預置之后, rmms 軟件成分在一內(nèi)經(jīng)營分配的在哪個每RMMS 模件的執(zhí)行PID的控制模式控制當?shù)卦?900赫茲。在模件和主機接口之間的聯(lián)系以400赫茲,這能不同于rmms 軟件成分的循環(huán)頻率。 自從我們使用一個三倍的緩沖區(qū)機制 [16]
86、 對于通訊來說通過雙口RAM在ARMbus 主接口上,沒有同步或者握手是必要的。因為關閉形式倒轉的運動學不為全部可能的RMMS 構造存在,我們用一個最小平方動態(tài)的控制做倒轉的運動學計算。</p><p><b> 6 綜合模擬</b></p><p> 為了幫助用戶評價是否一RMMS 記誦外形能成功完成一項規(guī)定的任務,我們已經(jīng)建造一個模擬器。模擬器基于來自Dene
87、b股份有限公司的TeleGrip 機器人模擬軟件, 在哪個是與有關系實時工藝設備通過一Bit3 VME對VME的改編者,象被在圖6 顯示的那樣的一SGI深紅色上運行。一個圖形用戶界面允許用戶集合模擬的RMMS 構造太喜歡集合真正的硬件。完成構造可以測試并且編程序使用TeleGrip對機器人設備起作用。構造也能被與涉及相同的RTPUs的實時軟件用來控制實際硬件的妄想接口。因此,評價不但操縱者的運動是可能的,而且實時的CPU 用法和負載平衡
88、。 與實際任務實行相比較,顯示一次RMMS 模擬。</p><p><b> 7 結束語</b></p><p> 我們已經(jīng)發(fā)展目前由6 個硬件模塊組成,帶有共4 自由度的一個再組合的標準化的機械手系統(tǒng)。這些模件可以在許多不同的構造里裝配。把機械手的靜態(tài)和動態(tài)的特性調(diào)整到任務。RMMS的控制軟件通過建造機械手的動態(tài)和動態(tài)的模型自動適應會議構造;這對用戶全部透明。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業(yè)機械手課程畢業(yè)設計外文文獻翻譯、中英文翻譯、外文翻譯
- 采摘機器人機械手外文翻譯@中英文翻譯@外文文獻翻譯
- 機械手臂課程畢業(yè)設計外文文獻翻譯@中英文翻譯@外文翻譯
- 機械設計外文文獻翻譯@中英文翻譯@外文文獻翻譯
- 汽車制動系統(tǒng)畢業(yè)外文文獻翻譯@中英文翻譯@外文翻譯
- 機械設計基礎畢業(yè)外文文獻翻譯@中英文翻譯@外文翻譯
- 金屬切削外文翻譯@中英文翻譯@外文文獻翻譯
- 汽車舉升機中英文翻譯@外文翻譯@外文文獻翻譯
- 機械加工工藝裝備夾具外文文獻翻譯@中英文翻譯@外文翻譯
- 立體車庫外文翻譯、畢業(yè)中英文翻譯、外文文獻翻譯
- jsp最佳實踐外文翻譯@中英文翻譯@外文文獻翻譯
- 沖壓模具設計畢業(yè)外文翻譯@中英文翻譯@外文文獻翻譯
- 不銹鋼外文文獻翻譯、中英文翻譯、鋼材機械外文翻譯
- plc的應用外文文獻翻譯、中英文翻譯、外文翻譯
- 液壓系統(tǒng)的綠色設計外文文獻翻譯@中英文翻譯@外文翻譯
- 植物保護外文文獻翻譯、中英文翻譯、外文翻譯
- 液壓系統(tǒng)畢業(yè)課程設計外文文獻翻譯、中英文翻譯、外文翻譯
- 柔性制造中英文翻譯、外文文獻翻譯
- 關于彈簧的機械課程畢業(yè)設計外文文獻翻譯、中英文翻譯、外文翻譯
- 如何延長軸承壽命外文文獻翻譯@外文文獻翻譯@中英文翻譯
評論
0/150
提交評論