版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、<p> 離心式和往復式壓縮機的工作效率特性</p><p> Rainer Kurz , Bernhard Winkelmann , and Saeid Mokhatab</p><p> 往復式壓縮機和離心式壓縮機具有不同的工作特性,而且關于效率的定義也不同。本文提供了一個公平的比較準則,得到了對于兩種類型機器普遍適用的效率定義。這個比較基于用戶最感興趣的要求提出的。此
2、外,對于管道的工作環(huán)境影響和在不同負載水平的影響給出了評估。</p><p> 乍一看,計算任何類型的壓縮效率看似是很簡單的:比較理想壓縮過程和實際壓縮過程的工作效率。難點在于正確定義適當?shù)南到y(tǒng)邊界,包括與之相關的壓縮過程的損失。除非這些邊界是恰好定義的,否則離心式和往復式壓縮機的比較就變得有缺陷了。</p><p> 我們也需要承認,效率的定義,甚至是在評估公平的情況下,仍不能完全回
3、應操作員的主要關心問題:壓縮過程所需的驅動力量是什么?要做到這一點,就需要討論在壓縮過程中的機械損失。</p><p> 隨著時間的推移效率趨勢也應被考慮,如非設計條件,它們是由專業(yè)的流水線規(guī)定,或者是受壓縮機的工作時間和自身退化的影響。</p><p> 管道使用的壓縮設備涉及到往復式和離心式壓縮機。離心式壓縮機用燃氣輪機或者是電動馬達來驅動。所用的燃氣輪機,總的來說,是兩軸發(fā)動機,
4、電動馬達使用的是變速馬達或者變速齒輪箱。往復壓縮機是低速整體單位或者是可分的“高速”單位,其中低速整體單位是燃氣發(fā)動機和壓縮機在一個曲柄套管內(nèi)。后者單位的運行在750-1,200rpm范圍內(nèi)(1,800rpm是更小的單位)并且通常都是由電動馬達或者四沖程燃氣發(fā)動機來驅動。</p><p><b> 效率</b></p><p> 要確定任何壓縮過程的等熵效率,就要
5、基于測量的壓縮機吸入和排出的總焓(h),總壓力(p),溫度(T)和熵(s),于是等熵效率變?yōu)椋?(Eq.1)</p><p> 并且加上測量的穩(wěn)態(tài)質量流m,吸收軸功率為:</p><p><b> (Eq.2)</b></p><p><b> 考慮機械效率。</b></p>
6、;<p> 理論(熵)功耗(這是絕熱系統(tǒng)可能出現(xiàn)的最低功耗)如下:</p><p><b> (Eq.3)</b></p><p> 流入和流出離心式壓縮機的流量可以視為“穩(wěn)態(tài)”。環(huán)境的熱交換通??梢院雎?。系統(tǒng)邊界的效率計算通常是用吸入和排出的噴嘴。需要確定的是,系統(tǒng)邊界要包含所有內(nèi)部泄露途徑,尤其是從平衡活塞式或分裂墻滲漏的循環(huán)路徑。機械效率,在
7、描述軸承和密封件的摩擦損失以及風阻損失時可以達到98%和99%。</p><p> 對于往復式壓縮機,理論的氣體馬力也是由Eq.3給出的,鑒于吸力緩沖器上游和排力緩沖器下游的吸氣和排氣壓力脈動。往復壓縮機就其性質而言,從臨近單位需要多方面的系統(tǒng)來控制脈動和提供隔離(包括往復式和離心式),以及可以自然存在的來自管線的管流量和面積管道。對于任何一個低速或高速單位的歧管系統(tǒng)設計,使用了卷相結合,管道長度和壓力降元素來
8、創(chuàng)造脈動(聲波)濾波器。這些歧管系統(tǒng)(過濾器)引起壓力下降,因此必須在效率計算時考慮到。潛在的,從吸氣壓力扣除的額外壓力不得不包含進殘余脈動的影響。就像離心壓縮機一樣,傳熱就經(jīng)常被忽視。</p><p> 對于積分的機器,機械效率一般取為95%。對于可分機機械效率一般使用97%。這些數(shù)字似乎有些樂觀,一系列數(shù)字顯示,往復式發(fā)動機機械損失在8-15%之間,往復壓縮機的在6-12%(參考1往復壓縮機招致號碼:庫爾茲
9、,R.,K.,光布倫,2007)。</p><p><b> 工作環(huán)境</b></p><p> 在這樣的情況下,當壓縮機在一個系統(tǒng)中運行時,管道長度Lu上游和Ld下游,以及管道pu上游的初始壓力和管道pe下游的終止壓力均被視為常量,在管道系統(tǒng)中我們有一個壓縮機運行的簡單模型(圖1)。</p><p> 圖1:管道段的概念模型(文獻2:庫
10、爾茲.R,M.由羅穆斯基,2006年)。</p><p> 對于給定的,標準管線定量流動能力將在吸入階段強加壓力,在壓縮機放電區(qū)強加壓力。對于給定的管線,壓縮機站頭部()流(Q)關系可以近似表述為 (Eq.4)</p><p> 其中和是常數(shù)(對于一個給定的管道幾何)分別描述了管道兩邊的壓力和摩擦損失(文獻2:庫爾茲.R,M.由羅穆斯基,2006年
11、)。</p><p> 除去其他問題,這意味著對于帶管道系統(tǒng)的壓縮機站,頭部所需流量揚程是由管道系統(tǒng)規(guī)定的(圖2)。特別地,這一特點對于壓縮機需要的能力允許頭部減量,按照規(guī)定的方式反之亦然。管道因此將不需要改變頭部的流量恒定(或壓力比)。</p><p> 圖2:建立在4式上的機頭流量關系。</p><p> 在短暫的情況下(如包裝其間),最初的操作條件遵循恒
12、功率分布,如頭部流量關系如下:</p><p><b> ?。‥q.5)</b></p><p> 并將漸進地達到穩(wěn)定的關系(文獻3:奧海寧S.,R.庫爾茲,2002年)</p><p> 在上述要求的基礎上,必須控制壓縮機輸出與系統(tǒng)要求匹配。該系統(tǒng)需求的特點是系統(tǒng)流程和系統(tǒng)頭部或壓力比的強烈關系。管線壓縮機提供了在操作條件經(jīng)驗下的大量變化
13、,一個重要問題就是如何使壓縮機適應這樣變化的條件,具體的說就是如何影響效率。</p><p> 離心壓縮機具有相當大的平頭部和流程特點。這意味著壓力比的改變對機器的實際流程有重大的影響(文獻4:庫爾茲R.,20004年)。對于一個恒速運行的壓縮機,頭部或壓力比隨著流量的增加而減少。控制壓縮機內(nèi)的流程可以實現(xiàn)壓縮機不同的運行速度。這是控制離心壓縮機最便捷的方法。兩軸燃氣輪機和變速電機允許大范圍的速度變化(通常是最
14、大速度或更多的40%或50%到100%)。應當指出,被控制的值通常不是速度,但速度是間接平衡由渦輪產(chǎn)生的動力(受進入燃氣輪機燃油流量控制)和壓縮機的吸收功率。</p><p> 事實上,在過去15年安裝的任何離心壓縮機在管線服務方面是由調(diào)速器來驅使的,通常是兩軸燃氣輪機。年長的設施和服務設施在其他管線服務有時使用單軸燃氣輪機(允許速度90%到100%的變化)和恒速電動機。在這些裝置中,吸節(jié)流或可變進氣導葉用來提
15、供控制方法。</p><p> 圖3:典型的管線運行點繪制成的典型離心壓縮機性能圖。</p><p> 離心壓縮機的運行封套受最大允許速度限制,最小流量(涌)和最大流量(窒息或石墻)(圖3)。另一個限制因素可能是可用的驅動電源。</p><p> 只有最小流量需要特別注意,因為它被定義為壓縮機的一種氣動穩(wěn)定性的極限。跨越這個限制以降低流動將導致壓縮機流動逆轉,
16、這可能會損壞壓縮機。調(diào)制解調(diào)器控制系統(tǒng)通過打開一個循環(huán)閥來控制這種情況。出于這個原因,幾乎所有的現(xiàn)代壓縮機裝置都使用帶有控制閥的循環(huán)線,當壓縮機內(nèi)的流量趨于穩(wěn)定極限時這種控制閥允許流量的增加??刂葡到y(tǒng)不斷地監(jiān)測壓縮機關系喘振線的運行點,并且有必要的話自動地開關循環(huán)閥。對于大多數(shù)應用來說,帶有開放或部分開放循環(huán)閥的運行模式只被用于開啟和關閉階段,或者是在混亂運行條件時的短暫時期。</p><p> 假設由公式4得
17、到管線特點,壓縮機的葉輪將在達到或接近其最大效率時被選出來運行,這個最大效率是由管線強加在整個系列的頭部和流量條件下的。這可能是有一個速度(N)控制的壓縮機,因為一個壓縮機的最有效點是由一種關系而連接的,這種關系需要大約(風扇法方程):</p><p><b> (Eq.6)</b></p><p> 為滿足上述關系的操作點,吸入氣壓是(基于效率幾乎保持不變這個的
18、事實):</p><p> (Eq.7) 正因為如此,這種力-速度關系允許動力渦輪運行達到或非常接近其整個范</p><p> 圍的理想速度。管線中典型的運行方案允許壓縮機和動力渦輪在大多數(shù)時間里在最有效點運行。然而,燃氣輪機的燃氣生產(chǎn)商將在部分負荷運行時丟失一些熱效率。</p><p> 圖3顯示了一個典型的實際例子:不同流動要求的管線運行點繪制成用于壓縮
19、機站中的速度控制離心壓縮機性能圖。</p><p> 往復壓縮機將自動服從系統(tǒng)壓力比的需求,只要沒有超出機械的限制條件(桿負載功率)。系統(tǒng)吸排氣壓力的改變將僅能引起閥門或早或晚的開啟。頭部可以自動下降因為閥門可以降低排氣端的管線壓力和/或吸入端更高的管線壓力。因此,如果沒有額外的措施,流量將大致恒定——除了容積效率將增加的變化,所以降低壓力比而增加流量。</p><p> 控制的挑戰(zhàn)存
20、在于系統(tǒng)要求的流量調(diào)整。如果沒有額外的調(diào)整,隨著壓力比的變化,壓縮機流量的改變微乎其微。從歷史上看,通過改變激活機器的數(shù)量使管線安裝許多小的壓縮機和調(diào)整流量。這個容量和負荷可通過速度調(diào)諧,或者通過一個單一單元的缸間隙中的許多小調(diào)整(加載步驟)來調(diào)諧。隨著壓縮機的發(fā)展,控制容量的負擔轉移到獨立壓縮機上。</p><p> 負荷控制是壓縮機運行的一個關鍵組成部分。從管線操作角度來看,在機組中流量變化要符合管線投出承
21、諾,以及實施公司最佳操作(例如,線包裝,負載預期)。從一個單元的角度來看,負荷控制包含降低單元流量(通過卸載或速度)使操作盡可能的貼近設計扭矩限制,并在壓縮機或驅動程序沒有超載的情況下進行。對于任何給定的機組入口和出口壓力,在任何負荷圖曲線上的關鍵限制都是桿負荷限制和馬力/扭矩限制。瓦斯控制通常會建立在一個機組的單元上,而這個機組運行必須達到管線流量目標。地方單元控制將建立負載步驟或速度要求來限制桿負荷或達到扭矩控制。</p>
22、;<p> 改變流量的常用方法是改變速度,改變間隙,或取消激活缸頭(保持進口閥開啟)。另一種方法是卸載無限步驟,從而延緩吸氣閥封閉以減少容積效率。此外,流程的一部分可以回收或吸氣壓力可以節(jié)流從而降低質量流量,同時保持進入壓縮機的容積流量基本不間斷。</p><p> 壓縮機控制策略應該能夠實現(xiàn)自動化,并在壓縮機運行期間能夠簡便地調(diào)整。特別地,壓縮機設計修改的戰(zhàn)略需求(如:離心壓縮機重新旋轉,改變
23、缸徑,或給往復壓縮機添加固定間隙)在這里不被考慮。需要指出的是,對于往復式壓縮機一個關鍵的控制要求是不超載驅動或超過機械限制。</p><p><b> 運行</b></p><p> 典型的穩(wěn)態(tài)管道運行將產(chǎn)生圖4所示的一個有效行為。該圖是評估沿管道穩(wěn)定運行特征狀態(tài)壓縮機效率的結果。大中型壓縮機都將達到100%流量的最佳效率,并允許超出設計流量的10%。不同的機械
24、效率并沒有考慮這種對比。</p><p> 往復壓縮機效率在文獻5中被推導出,從增加的閥門效率測量與壓縮效率和造成的損失脈動衰減器。低速壓縮機的效率是可以實現(xiàn)的。高速往復壓縮機在效率上可能比較低。</p><p> 圖4:以穩(wěn)態(tài)管線特性運行為基礎的在不同流量率的壓縮機效率。</p><p> 圖4顯示在較低壓力比下增加的閥門損失的影響和往復機器的較低流量,而離
25、心壓縮機的效率幾乎保持常量。</p><p><b> 結論</b></p><p> 不同型號壓縮機間的效率定義和對比需要密切關注邊界條件的定義,對于這樣的邊界條件,效率和受用的運行發(fā)展趨勢同時被定義。當效率值用來計算功耗時機械效率具有重要作用。如果不考慮這些定義,不同系統(tǒng)的優(yōu)缺點討論將變得不準確和有誤導性。</p><p><b&
26、gt; 參考文獻:</b></p><p> 1.庫爾茲.R.K.光布倫,2007?!巴鶑秃碗x心壓縮機的效率定義和負荷管理”</p><p> 美國機械工程師協(xié)會 文章 GT2007-2708</p><p> 2.庫爾茲.R,M.由羅穆斯基,2006。“不對稱接壓縮機站閑置產(chǎn)能”。美國機</p><p> 械工程師協(xié)會
27、 文章 2006-90069</p><p> 3.奧海寧.S..R.庫爾茲,2002。“兩機壓縮機站的系列或平行排列”。反式。美國機械工程師協(xié)會,第124欄</p><p> 4.庫爾茲.R,2004?!半x心壓縮機性能的物理”。管道仿真利益集團。棕櫚泉,加利福尼亞</p><p> 5.米.瓦特沙發(fā),2003。“天然氣壓縮服務六主線壓縮機閥門的性能和耐用性試
28、驗”。天然氣機械會議。鹽湖城,UT</p><p><b> 原文</b></p><p> Efficiency And Operating Characteristics Of Centrifugal And Reciprocating Compressors </p><p> By Rainer Kurz, Bernhard Wi
29、nkelmann, and Saeid iVIokhatab</p><p> Reciprocating compressors and centrifugal compressors have different operating characteristics and use different eificiency definitions. This article provides guidelin
30、es for an equitable comparison, resulting in a universal efficiency definition for both types of machines. The comparison is based on the requirements in which a user is ultimately interested. Further, the impact of actu
31、al pipeline operating conditions and the impact on efficiency at different load levels is evaluated.</p><p> At first glance, calculating the efficiency for any type of compression seems to be straightforwa
32、rd: comparing the work required of an ideal compression process with the work required of an actual compression process. The difficulty is correctly defining appropriate system boundaries that include losses associated w
33、ith the compression process. Unless these boundaries are appropriately defined, comparisons between centrifugal and reciprocating compressors become flawed.</p><p> We also need to acknowledge that the effi
34、ciency definitions, even when evaluated equitably, still don't completely answer one of the operator's main concerns: What is the driver power required for the compression process?To accomplish this, mechanical l
35、osses in the compression systems need to be discussed.</p><p> Trends in efficiency should also be considered over time, such as off-design conditions as they are imposed by typical pipeline operations, or
36、the impact of operating hours and associated degradation on the compressors.</p><p> The compression equipment used for pipelines involves either reciprocating compressors or centrifugal compressors. Centri
37、fugal compressors are driven by gas turbines, or by electricmotors. The gas turbines used are, in general,two-shaft engines and the electric motor drives use either variable speed motors, or variable speed gearboxes. Rec
38、iprocating compressors are either low speed integral units, which combine the gas engine and the compressor in one crank casing,or separable "high-speed" units</p><p> Efficiency</p><p&
39、gt; To determine the isentropic efficiency of any compression process based on total enthalpies (h), total pressures (p), temperatures (T)and entropies (s) at suction and discharge of the compressor are measured, and th
40、e isentropic efficiency r\^ then becomes:</p><p><b> (Eq.1)</b></p><p> and, with measuring the steady state mass flow m, the absorbed shaft power is:</p><p><b>
41、 (Eq.2)</b></p><p> considering the mechanical efficiency r\^.</p><p> The theoretical (isentropic) power consumption (which is the lowest possible power consumption for an adiabatic sy
42、stem) follows from:</p><p><b> (Eq.3)</b></p><p> The flow into and out of a centrifugal compressor can be considered as "steady state."Heat exchange with the environment
43、 is usually negligible. System boundaries for the efficiency calculations are usually the suction and discharge nozzles. It needs to be assured that the system boundaries envelope all internal leakage paths,in particular
44、 recirculation paths fi^om balance piston or division wall leakages. The mechanical efficiency r)^.,, describing the friction losses in bearings and seals, as w</p><p> For reciprocating compressors, theore
45、tical gas horsepower is also given by Eq. 3,given the suction and discharge pressure are upstream of the suction pulsation dampeners and downstream of the discharge pulsation dampeners. Reciprocating compressors, by thei
46、r very nature, require manifold systems to control pulsations and provide isolation from neighboring units (both reciprocating and centrifugal), as well as from pipeline flow meters and yard piping and can be extensive i
47、n nature.The design of </p><p> For integral machines, mechanical efficiency is generally taken as 95%. For separable machines a 97% mechanical efficiency is often used. These numbers seem to be somewhat op
48、timistic, given the fact that a number of sources state that reciprocating engines incur between 8-15% mechanical losses and reciprocating compressors between 6-12%(Ref 1: Kurz , R., K. Brun, 2007).</p><p>
49、 Operating Conditions</p><p> For a situation where a compressor operates in a system with pipe of the length Lu upstream and a pipe of the length Ld downstream, and further where the pressure at the beginn
50、ing of the upstream pipe pu and the end of the downstream pipe pe are known and constant, we have a simple model of a compressor station operating in a pipeline system (Figure 1).</p><p> Figure 1: Conceptu
51、al model of a pipeline segment (Ref. 2: Kurz, R., M. Lubomirsky.2006).</p><p> For a given, constant flow capacity Qstd the pipeline will then impose a pressure ps at the suction and pd at the discharge sid
52、e of the compressor. For a given pipeline, the head (Hs)-flow (Q) relationship at the compressor station can be approximated by</p><p><b> ?。‥q.4)</b></p><p> where C3 and C4 are co
53、nstants (for a given pipeline geometry) describing the pressure at either ends of the pipeline, and the friction losses, respectively(Ref 2: Kurz, R., M. Lubomirsky, 2006).</p><p> Among other issues, this
54、means that for a compressor station within a pipeline system, the head for a required flow is prescribed by the pipeline system (Figure 2). In particular, this characteristic requires the capability for the compressors t
55、o allow a reduction in head with reduced flow, and vice versa, in a prescribed fashion. The pipeline will therefore not require a change in flow at constant head (or pressure ratio).</p><p> Figure 2: Stafi
56、on Head-Flow relationship based on Eq. 4.</p><p> In transient situations (for example during line packing), the operating conditions follow initially a constant power distribution, i.e. the head flow relat
57、ionship follows:</p><p><b> ?。‥q.5)</b></p><p> and will asymptotically approach the steady state relationship (Ref 3: Ohanian, S., R.Kurz, 2002).</p><p> Based on the
58、 requirements above, the compressor output must be controlled to match the system demand. This system demand is characterized by a strong relationship between system flow and system head or pressure ratio.Given the large
59、 variations in operating conditions experienced by pipeline compressors, an important question is how to adjust the compressor to the varying conditions, and, in particular, how does this influence the efficiency.</p&
60、gt;<p> Centrinagal compressors tend to have rather flat head vs. flow characteristic. This means that changes in pressure ratio have a significant effect on the actual flow through the machine (Ref 4:Kurz, R., 2
61、004). For a centrifugal compressor operating at a constant speed, the head or pressure ratio is reduced with increasing flow.</p><p> Controlling the flow through the compressor can be accomplished by varyi
62、ng the operating speed of the compressor This is the preferred method of controlling centrifugal compressors. Two shaft gas turbines and variable speed electric motors allow for speed variations over a wide range (usuall
63、y from 40-50% to 100% of maximum speed or more).It should be noted, that the controlled value is usually not speed, but the speed is indirectly the result of balancing the power generated by the power turbine</p>
64、<p> Virtually any centrifugal compressor installed in the past 15 years in pipeline service is driven by a variable speed driver, usually a two-shaft gas turbine. Older installations and installations in other tha
65、n pipeline service sometimes use single-shaft gas turbines (which allow a speed variation from about 90-100% speed) and constant speed electric motors. In these installations, suction throttling or variable inlet guide v
66、anes are used to Drovide means of control.</p><p> Figure 3: Typical pipeline operating points plotted into a typical centrifugal compressor performance map.</p><p> The operating envelope of
67、a centrifugal compressor is limited by the maximum allowable speed, the minimum flow (surge flow),and the maximum flow (choke or stonewall)(Figure 3). Another limiting factor may be the available driver power.</p>
68、<p> Only the minimum flow requires special attention, because it is defined by an aerodynamic stability limit of the compressor Crossing this limit to lower flows will cause a flow reversal in the compressor, whi
69、ch can damage the compressor. Modem control systems prevent this situation by automatically opening a recycle valve. For this reason, virtually all modern compressor installations use a recycle line with control valve th
70、at allows the increase of the flow through the compressor if it comes ne</p><p> Assuming the pipeline characteristic derived in Eq. 4, the compressor impellers will be selected to operate at or near its be
71、st efficiency for the entire range of head and flow conditions imposed by the pipeline. This is possible with a speed (N) controlled compressor, because the best efficiency points of a compressor are connected by a relat
72、ionship that requires approximately (fan law equation):</p><p><b> (Eq.6)</b></p><p> For operating points that meet the above relationship, the absorbed gas power Pg is (due to th
73、e fact that the efficiency stays approximately constant):</p><p><b> (Eq.7)</b></p><p> As it is, this power-speed relationship allows the power turbine to operate at, or very clos
74、e to its optimum speed for the entire range.The typical operating scenarios in pipelines therefore allow the compressor and the power turbine to operate at its best efliciency for most of the time. The gas producer of th
75、e gas turbine will, however, lose some thermal efficiency when operated in part load.</p><p> Figure 3 shows a typical real world example: Pipeline operating points for different flow requirements are plott
76、ed into the performance map of the speed controlled centrifugal compressor used in the compressor station.</p><p> Reciprocating compressors will automatically comply with the system pressure ratio demands,
77、as long as no mechanical limits (rod load power)are exceeded. Changes in system suction or discharge pressure will simply cause the valves to open earlier or later. The head is lowered automatically because the valves se
78、e lower pipeline pressures on the discharge side and/or higher pipeline pressures on the suction side. Therefore, without additional measures, the flow would stay roughly the same — except </p><p> The cont
79、rol challenge lies in the adjustment of the flow to the system demands. Without additional adjustments, the flow throughput of the compressor changes very little with changed pressure ratio. Historically, pipelines insta
80、lled many small compressors and adjusted flow rate by changing the number of machines activated. This capacity and load could be fine-tuned by speed or by a number of small adjustments (load steps) made in the cylinder c
81、learance of a single unit. As compressors have grown</p><p> Load control is a critical component to compressor operation. From a pipeline operation perspective, variation in station flow is required to mee
82、t pipeline delivery commitments, as well as implement company strategies for optimal operation (i.e., line packing, load anticipation).From a unit perspective, load control involves reducing unit flow (through unloaders
83、or speed)to operate as close as possible to the design torque limit without overloading the compressor or driver The critical limits on</p><p> The common methods of changing flow rate are to change speed,
84、change clearance, or de-activate a cylinder-end (hold the suction valve open). Another method is an infinite-step unloader, which delays suction valve closure to reduce volumetric efficiency. Further, part of the flow ca
85、n be recycled or the suction pressure can be throttled thus reducing the mass flow while keeping the volumetric flow into the compressor approximately constant.</p><p> Control strategies for compressors sh
86、ould allow automation, and be adjusted easily during the operation of the compressor.In particular, strategies that require design modifications to the compres.sor (for example: re-wheeling of a centrifugal compressor, c
87、hanging cylinder bore, or adding fixed clearances for a reciprocating compressor)are not considered here. It should be noted that with reciprocating compressors, a key control requirement is to not overload the driver or
88、 to exceed mechanical l</p><p><b> Operation</b></p><p> The typical steady state pipeline operation will yield an efliciency behavior as outlined in Figure 4. This figure is the r
89、esult of evaluating the compressor efTiciency along a pipeline steady state operating characteristic. Both compressors would be sized to achieve their best efficiency at 100% flow, while allowing for 10% flow above the d
90、esign flow. Different mechanical efficiencies have not been considered for this comparison.</p><p> The reciprocating compressor efl'iciency is derived n-om valve efficiency measurements in Ref 5 (Noall
91、, M., W. Couch, 2003) with compression efficiency and losses due to pulsation attenuation devices added. The efficiencies are achievable with low speed compressors. High speed reciprocating compressors may be lower in ef
92、ficiency.</p><p> Figure 4: Compressor Efficiency af different flow rates based on operation aiong a steady state pipeline characteristic.</p><p> Figure 4 shows the impact of the increased va
93、lve losses at lower pressure ratio and lower flow for reciprocating machines, while the efficiency of the centrifugal compressor stays more or less constant.</p><p> Conclusions</p><p> Effici
94、ency definitions and comparison between different types of compressors require close attention to the definition of the boundary conditions for which the efficiencies are defined as well as the operating scenario in whic
95、h they are employed. The mechanical efficiency plays an important role when efficiency values are used to calculate power consumption. If these definitions are not considered, discussions of relative merits of different
96、systems become inaccurate and misleading. </p><p> REFERENCES</p><p> 1 Kurz . R.. K. Brun. 2007. " EfTiciency Definition and Load Management for Reciprocating and Centrifugal C ompressor
97、s," ASME Paper GT2OO7-27O81.</p><p> 2 Kurz. R., M. Lubomirsky, 2006. "Asymttietric Solution for Compressor Station Spare Capacity."ASMt: Paper 2006-90069.</p><p> 3 Ohanian. S.
98、. R. Kurz. 2002, "Series or Parallel Arrangement in a Two-Unit Compressor Station." Trans.ASME JEng for GT and Power. Vol.124.</p><p> 4 Kurz. R.. 2004. "The Physies of Centrifugal Compressor
99、 Performance." Pipeline Simulation Interest Group. Palm Springs. CA.</p><p> 5 Noall, M.. W. Couch. 2003, "Performance and Endurance Tests of Six Mainline Compressor Valves in Natural Gas Compress
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--離心式和往復式壓縮機的工作效率特性
- 往復式壓縮機
- 【145】離心式和往復式壓縮機的工作效率特性【中文6500字】
- 【145】離心式和往復式壓縮機的工作效率特性【中文6500字】
- 【145】離心式和往復式壓縮機的工作效率特性【中文6500字】.doc
- 【145】離心式和往復式壓縮機的工作效率特性【中文6500字】.doc
- 往復式壓縮機安裝方案
- 外文翻譯--封閉往復式壓縮機壓縮循環(huán)非穩(wěn)態(tài)分析
- 外文翻譯--封閉往復式壓縮機壓縮循環(huán)非穩(wěn)態(tài)分析
- 往復式壓縮機檢修流程
- 往復式壓縮機培訓教材
- 外文翻譯(中文)--封閉往復式壓縮機壓縮循環(huán)非穩(wěn)態(tài)分析
- 新氫往復式壓縮機3
- 外文翻譯--往復式壓縮機的熱力學分析
- 外文翻譯--往復式壓縮機的熱力學分析
- 外文翻譯(中文)--封閉往復式壓縮機壓縮循環(huán)非穩(wěn)態(tài)分析.docx
- 外文翻譯(中文)--封閉往復式壓縮機壓縮循環(huán)非穩(wěn)態(tài)分析.docx
- 1000馬力燃氣往復式壓縮機系統(tǒng)
- 1000馬力燃氣往復式壓縮機系統(tǒng)
- 往復式壓縮機安裝基礎知識
評論
0/150
提交評論